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Abstract. This article surveys Galileo’s contribution to the 
conceptualisation of the problem of isochronism, as his most important 
input in the study of the oscillation of heavy bodies. We will deal essentially 
with the mathematical aspects of his various attempts to discover 
mathematical proofs for his theorems of isochronism, in his early 
manuscripts (1600-1609), bound in Volume 72 of the Galilean Manuscripts, 
and in his later two major publications, the Dialogo and the Discorsi. The 
experimental procedures he implemented in his research will be dealt with 
as far as they shed light on different aspects of properly mathematical issues 
of the Galilean analysis of iscohronism. Alternating between the analysis of 
Galileo’s private manuscripts and the relevant passages in his mature works, 
we follow the emergence and evolution of Galileo’s theory of the pendulum 
within his physics of motion, and we witness how his investigation was 
faced with serious challenges, mathematical and experimental, that he could 
never overcome completely. 
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1. Introduction 

Two major subjects dominated physics in the 17th century, those of 
acceleration and oscillation of bodies. The works of Galileo in physics provide a 
perfect illustration of this statement. Almost all his achievements in the study of 
motion were dedicated precisely to these two themes. Less known than his researches 
on acceleration, his work on oscillation, especially on isochronism, is no less 
important on the mathematical and methodological levels. Very early, at the beginning 
of the century, as we learn from his correspondence and from his manuscript papers, 
we find him struggling with the question of isochronism, that he tried to establish on a 
rigorous mathematical foundation, before dealing with that of acceleration. It was 
while studying the latter that he discovered the law of free fall that he demonstrated, 
in an early attempt, on the basis of a property of isochronism. 
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This article aims to survey Galileo’s contribution to the conceptualisation of 
the problem of isochronism, as his most important contribution to resolving the 
problem of the oscillation of heavy bodies. We will deal essentially with the 
mathematical aspects of his various arduous attempts to establish his theorems of 
isochronism on a solid mathematical foundation, in his early manuscripts (1600-1609) 
and in his later two major publications, the Dialogo sopra i due massimi sistemi (1632) and 
the Discorsi e dimostrazioni matematiche (1638). The experimental procedures he 
implemented in his research will be addressed only as far as they would shed light on 
the properly mathematical issues. 

Until recently, few general studies were devoted to the question of 
isochronism in Galileo. This situation changed drastically as several publications were 
released and yielded important results.2 In parallel, Galilean studies have been 
enriched in recent decades by a huge quantity of articles and books on Galileo’s 
personal notes recording his early investigations on the basic properties of motion. 
These studies painted a rich and informative picture of the genesis of Galileo’s “new 
science of motion,” in which several documents are directly related to isochronism. 
Even though we know more, at present, about his theory of pendulum and 
isochronism, the connections between Galileo’s work on the pendulum theory and the 
mathematical propositions of isochronism deserve to be reexamined, with the aim of 
analysing this link thoroughly. In the following essay, I propose to provide a survey of 
this important topic, by alternating between the analysis of Galileo’s private 
manuscripts and the relevant passages in his mature works. Thus we follow the 
emergence and evolution of Galileo’s theory of the pendulum within his physics of 
motion, and we witness how the great physicist confronted serious challenges, 
mathematical and experimental, that he could never overcome completely. 

 
2. Setting the stage 

In the Galilean science of motion, the problem of isochronism refers to the 
physical situation when the equality of times for motions of one or several bodies is 
obtained. More precisely, it concerns determining the conditions in which periods of 
descent on internal cords (considered as many inclined planes) of a vertical circle or 
during oscillations along arcs of a circle are constant. The first case describes what 
may be called the isochronism of cords, whereas the second concerns the pendulum 
isochronism. In his later main publications, the Dialogo and especially the Discorsi, 
Galileo addressed the question of isochronism according to those two complementary 
angles, for cords and for arcs of a circle. The first case was stated and proved as the 
sixth theorem of accelerated motion; it is known as ‘Galileo’s Theorem’ or the law of 
cords: 

 
Theorem VI. If from the highest or lowest point in a vertical circle there be 
drawn any inclined planes meeting the circumference, the times of descent 
along these cords are each equal to the other.3 

 
The pendulum isochronism will not have this privilege of being stated as a 

theorem. In the First Day of the Discorsi, it is introduced in a discursive way as valid 
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for small, large, and mean oscillations, and then an experiment is reported to provide 
support to this assertion, describing the bahaviour of two unequal heavy balls, one in 
cork and the other in lead. The two balls are suspended by two equal threads and 
begin to oscillate when they are discarded from the vertical in the same time: 

 
This free vibration repeated a hundred times showed clearly that the heavy 
body maintains so nearly the period of the light body that neither in a 
hundred swings nor even in a thousand will the former anticipate the latter by 
as much as a single moment, so perfectly do they keep step.4 
 
Galileo never happened to establish this proposition on a mathematical proof, 

so he validated it with the law of cords and with various experimental set-ups 
supposed to provide it with the required confirmation. However, the lack of 
mathematical proof did not prevent him from considering it as solid enough to 
support a theory of the pendulum in which the properties of the pendulum were 
invested, sometimes successfully, for the conception of various devices to measure 
time. 

Among the sources of information on the procedures enforced by Galileo in 
his investigations on the properties of motion, we have access to a rich manuscript 
containing various notes and fragments, many of which are autographs written in 
Galileo’s hand. These documents provide a valuable help in reconstructing the 
evolution of his early investigations on motion. Collected in Volume 72, a codex of 
the Manoscritti Galileiani preserved at the Biblioteca Nazionale in Florence, these papers 
have been a hot spot for Galilean studies for almost five decades. 

Volume 72 contains all the manuscript materiel that was preserved from 
Galileo’s original researches on motion from around 1600 until the final writing of the 
Discorsi (1631-1636). Composed of 241 folios, the codex contains texts, mathematical 
demonstrations, diagrams and calculations. These documents record the first versions 
of the discoveries from which derive most of the theorems of the De motu locali, the 
mathematical treatise published in the last two parts of the Discorsi, respectively on 
uniform motion (DML-1), accelerated motion (DML-2), and on the motion of 
projectiles (DML-3). The major part of these papers were written by Galileo in 
different periods of his research in kinematics of motion, mainly in Padua from 1600 
until mid-1609, in Florence between 1616 and 1618, and during the preparation of the 
final version of the Discorsi from 1631 onwards.5 

The interest of these manuscript materiels was recognized by historians of 
science in an early stage of Galilean studies. Caverni studied some of them in the late 
19th century,6 then most of the codex was published by Favaro, the editor of the 
Edizione Nazionale of Galileo’s works, in volume VIII, as an appendix to the Discorsi. 
But these private papers underwent a real historiographic renaissance only in the 
1970s, when they became the centre of interest of historical studies aiming at 
reconstructing the chronology of Galileo’s discoveries on motion. The study of this 
materiel is not easy, as the documents are for the most part undated fragments bound 
together without any order, which makes their interpretation an arduous task. Despite 
these difficulties, modern history of science drew from their analysis valuable 
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conclusions. One of the most important results was setting a relative chronology 
describing the main stages of the emergence and evolution of the new science of 
motion presented by Galileo to his readers in the three books of DML in 1638. 

Concerning the pendulum theory and the various aspects of isochonism, 
several documents of Volume 72 show diverse ways in which Galileo tried to 
construct the mathematical demonstration of the law of isochronism. They depict 
clearly a case in point of his method and constitute an actual instance of the way he 
conceived of the entreprise of mathematising physical pheonomena. Using 
mathematics as his main tool of investigation, he devoted to experiment on the whole 
a secondary role in this matter. In this particular case, experiment had only a loose 
agreement with his proposition, and was even at loggerheads with the general 
assertion of the pendulum isochronism. However, this gap between theory and 
experiment did not cause Galileo to reject the validity of his theorem. On the 
contrary, supporting the isochronism of the arcs of circle by the isochronism of cords, 
he continued to defend the validity of these two aspects of his theory of isochronism. 

 
3. The isochronism of cords 

From November 1602 onwards, Galileo claimed that the motions of a simple 
pendulum were isochronous, although he admitted that he had no firm proof 
supporting it. This situation continued all along his scientific career, when he 
published in the Discorsi the different arguments of his pendulum theory. This 
important issue received different historiographical assessments. While some 
historians speculated that Galileo must have relied on “a wider range of evidence than 
he indicated in the Discorsi,”7 others claimed that he published the isochronism of the 
circular pendulum even though he knew it to be false,8 and that his claim about the 
isochronism of the pendulum was “based more on mathematical deduction than on 
experimental observation.”9 More recently, it was shown that light pendulums set to 
swing from modest angles can indeed be isochronous; however, by using heavier 
pendulums or greater angles, the isochronism of the simple pendulum breaks down. 
Galileo could not have failed to notice this phenomenon by himself, which must have 
certainly confirmed his conviction that experience does not teach the causes of natural 
processes and, in turn, neutralized the problem of discrepancy from isochrony.10 

 
3.1. The discovery announcement 

A 1602 letter is the earliest surviving document in which Galileo discusses the 
hypothesis of pendulum’s isochronism. In the letter, Galileo claimed that all 
pendulums are isochronous. He added that he had long been trying to demonstrate 
isochronism on the basis of “mechanical arguments,” but that so far he had been 
unable to do so. In brief, as we shall see, from 1602 onwards, Galileo referred to 
pendulum isochronism as an admirable property but failed to demonstrate it. 

On 29 November 1602 Galileo wrote in Padua a letter to Guidobaldo del 
Monte,11 his patron and protector, in which he disclosed three propositions that he 
just discovered: (a) a first proposition stating the pendulm isochronism and asserting that 
large as well as small oscillations of a pendulum occur in equal times for the same 
length of the thread; (b) a second proposition known in the literature as the cords 
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isochronism according to which a body moving downwards along any cords drawn from 
the lowest point or the highest point of a vertical circle and meeting the circumference 
in any point, will perform all its descents in equal times. This proposition is sometimes 
referred to as “Galileo’s theorem.”12 To these two general statements Galileo added, 
by extension, a third proposition on the ratios of the times of descent on internal 
cords of the lowest quarter of a vertical circle: (c) a body requires more time to 
descend on a cord drawn from the circumference of the circle towards its lowest point 
than to descend on two combined cords subtending the arc determined by the first 
cord.13 The second and third propositions were numbered in the Discorsi as Theorems 
VI and XXII of the accelerated motion. 

We understand from Galileo’s letter that this missive was part of a larger 
correspondence with Guidobaldo including previous epistolary exchanges on the 
same subject. First, Galileo announced the discovery of the cords isochronism. 
Surprised by this result and unable to provide a conclusive experimental corroboration 
for it, Guidobaldo expressed his skepticism to Galileo concerning the isochronism of 
circular motion. Then Galileo answered him in the long missive dated November 29, 
1602, in which he adviced to use the pendulum to reconcile the mathematical 
proposition with real motion: 

 
I take two thin strings, equally long about two or three braccia, let them be AB, 
EF, and attach them to two nails, A and E, while at the other ends I tie two 
equal lead balls (although it would make no difference if they were different) 
[Figure 1]. After removing the strings from the vertical, one a lot, as along arc 
CB, the other very little, as along arc IF, I let them go at the same moment. 
One begins to describe great arcs, similar to BCD, while the other describes 
small arcs, similar to FIG; yet mobile B does not employ more time traversing 
the whole arc BCD, than the other mobile, F, traversing arc FIG.14 

 

 
Figure 1 
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Then he stated the two theorems related respectively to the isochronism of 
cords and to the properties of the times of descent on the internal cords of the lowest 
quadrant of a vertical circle:15 

 
Let diameter AB, in circle BDA, be perpendicular to the horizon, and from 
point A let lines be drawn to the circumference, such as AF, AE, AD, AC 
[Figure 2]: I prove that equal bodies fall in the same time along the vertical BA 
and the inclined planes CA, DA, EA, FA. Thus, if they start at the same 
moment from points B, C, D, E, F, they will arrive at the same moment at 
point A, no matter how small is line FA. The following, which I have also 
demonstrated, may perhaps appear even more incredible. If the line is not 
greater than the cord of a quadrant, and if the lines, SI, IA, are taken as one 
pleases, the same body will more quickly traverse path SIA, starting from S, 
than the single path IA, starting from I.”16 
 

 
Figure 2 

 
In terms of the diagrams drawn in the letter, the three propositions may be 

formulated as follows: 
– The pendulum isochronism : t(FIG) = t(BCD) [Figure 1]; 
– The cords isochronism : t(FA) = t(EA)... = t(BA) = t(IA) [Figure 2]; 
– Theorem XXII : t(SIA) < t(SA) [Figure 2]. 

 
The letter to Guidobaldo is a document of the outmost historical value. In it 

Galileo announced no less than the first three propositions of the new science of 
motion and brings a clear testimony as to the success of his early investigations for 
building general propositions which are compatible with experience. Further, it is a 
firmly dated document that constitutes thus a valuable temporal landmark to which 
we can report several of Galileo’s early manuscript notes written at the beginning of 
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the century and in which he endeavoured precisely to establish proofs for the 
theorems he announced in this letter to his patron. 

Galileo did not communicate to Guidobaldo the mathematical procedures on 
which he established his three propositions, but he specified in the letter that he 
demontrated them “without transgressing the boundaries of mechanics” (senza 
trasgredire i termini mecanici). This remark is an indication on the conceptual and 
chronological links between his early research on the properties of isochronism and 
his work on machines recorded in the last version of Le Mecaniche, revised in its final 
form around 1600.17 

The early Galilean work aiming at building up demonstrations of pendular 
isochronism were recorded in some papers of Volume 72, for example folios 115v, 
154r, 163r, 183r and 189v. These tentative proofs and supporting arguments consisted 
mainly of calculations and measures probably extracted from experiments. As we shall 
see, they inform us about some controversial aspects of the Galilean theory of the 
pendulum. In contrast, the main feature of the researches aiming at justifying 
Theorems VI and XXII recorded on some documents of Volume 72 reveal an intense 
theoretical work coupled with experimental investigations.18 

 
3.2. Early attempts at developing a demonstration of isochronism 

The recto of folio 154 contains traces of the investigations carried out by 
Galileo on isochronism, analysed superficially by tools made up in the context of 
mechanics and related to its problems: besides calculations disseminated on the page, 
the principal diagram [Figure 3] shows a suspended body sustained from its centre and 
from a point located on the arm of a balance, with a line tangent to the circle. On 
folio 121v,19 we find traces of exercises performed by Galileo which are probably 
related to calculations on the law of equality of times in descents along the cords of a 
vertical circle [Figure 3]. This diagram is similar to a figure drawn in William Gilbert’s 
De Magnete (1600) and hence can be dated after 1600.20 
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Figure 3: Diagrams21 on folio 154v (left) and folio 121v (right) and their 

reconstructions 
 

Another fragment on the recto of the same folio 12122 shows the vestiges of 
researches on pendulum oscillations, while the diagram on the verso of folio 15023 
[Figure 4] reveals similar concerns pertaining to an early date: the determination of the 
appropriate graphical representation to demonstrate the law of isochronism. However, 
the essential part of Galileo’s efforts in this early period in order to justify 
geometrically the law of cords is reflected by the materials on folios 151r and 160r. 
These documents contain two demonstrations of “Galileo’s theorem” that will be 
reproduced almost verbatim in DML-2. 

 

 
Figure 4 

 
Before we inspect in detail these two documents, let’s survey briefly the early 

attempts of Galileo to demontrate the proposition referred to as Theorem XXII in 
DML-2. 
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4. First justifications of Theorem XXII 
Several papers of Volume 72 reveal Galileo’s hard efforts and repeated 

attempts to endow Theorem XXII with a mathematical justification. Some 
fragmentary notes inscribed on folios 131r and 189r provide a significant insight of 
these attempts, as they represent probably his first trials to putting to the proof this 
theorem by different means, including geometrical analysis, arithmetical calculations 
and probably actual measurements. 

 
 

 
 

Figure 5 
 

The recto of folio 18924 contains a diagram where we find traces of 
preliminary investigations on the problems of isochronism connected to Theorem 
XXII [Figure 5]. The diagram is similar to the one used to prove this proposition on 
folio 163r.25 It also closely resembles the figure illustrating the geometrical reasoning 
on folio 131r. Obviously, these three sheets hold surviving evidence of the first 
enquiries performed by Galileo on Theorem XXII.26 
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Figure 6 

 
Folio 131r is composed of four incomplete fragments related to Theorem 

XXII. We find in them the same mathematical argument implemented in the final 
proof of this theorem on folio 163r, namely the inequality t(DBC) < t(DC), the letters 
O and V, and the relation m(RC, BT) = DO = m(CD, DF) [Figure 6]. To prove the 
theorem, Galileo could just introduce the mean proportional in order to deduce that if 
VA = m(AC, AB) then the relation between CO and CV is the solution to the 
problem. 

The research carried out by Galileo on this difficult proposition required the 
mobilization of his efforts during several years, as this is made clear in several Paduan 
papers. In this laborious work, which deserves to be meticulously studied 
independently, he obtained and demonstrated three other propositions related to 
descents accomplished rapidly or in the least time: Theorems XIX, XX and XXI of 
DML-2, of which the scope culminated in the scolium of the brachistochrone.27 

The early demonstrations of these three theorems are extant on folios 140r, 
127v, 168r. They have the form of geometrical exercises aimed to determine the 
properties of the paths of the quickest descents. Elaborating on the mathematical 
consequences of the law of cords, they deal with the same problem: determining the 
trajectories in which are obtained the quickest descents between two points, between a 
line and a point and between a point and a line. The method used is based on 
elementary geometrical procedures, belonging essentially to the geometry of the circle. 
In the three cases, the result is deduced by a simple application of the law of cords. 

On the other hand, Galileo had to do his best in two other directions to 
validate Theorem XXII, by performing calculations and experimental verifications. 
Extensive numerical calculations related to probable experimental measures are 
recorded on folios 166r, 183r, 184r, 189r and 192r, whereas exercises of geometry 
make up most of the material registered on folios 129r, 140r, 149v, 150r-v, 157v, 185v 
and 188r-v. These annotations seem to lead to the demonstration of the theorem, as 
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we find it on folios 163r, 172r-v and 186v. In this regard, the materials on the recto of 
folio 163 deserve a special mention, as they represent a great success of Galileo’s work 
preserved in Volume 72. A complete geometrical proof of the proposition is 
preserved on this document. Built up according to a rigourous model explicitating all 
the lemmas and scholia applied in the proof, this demonstration was later taken over 
by Galileo in the Discorsi and appeared almost verbatim in DML-2.28 
 
5. Demonstration of the law of chords 

After the discovery of the cords isochronism and of the isochronism of 
pendulum oscillations, Galileo contrived to confirm both types of isochronism 
theoretically and experimentally. During several years, he continued studying their 
properties and trying to elaborate matematical proofs, as revealed by the contents of 
folios 90r, 115v, 121v, 154r-v and 189r. These early documents record the outcome of 
his struggle to establish precise relations between the lengths of pendulums and their 
periods.29 On the level of the geometrical proof, although he has never been able to 
go beyond noticing the equality of durations for small pendular oscillations, he was 
apparently pleased to notice the support that circular isochronism could provide to 
the equality of periods of motion along cords, as it is stated in Theorem VI. This may 
be the reason why the theorem of circular isochronism was not incorporated in the 
DML-2, but confined to receive a simple discursive treatment in the First Day of the 
Discorsi. 

Theorem VI was demontrated three times in the DML-2. The scheme of the 
first proof –of which no trace exists in Volume 72– is strictly kinematical.30 It was 
probably built up just before the publication of the Discorsi, along the model of the 
exercises we find on folios 35r, 139r and 172r. According to this scheme, the theorem 
is demontrated with the help of purely geometric procedures based on the equality 
t(AB) = t(AC) [Figure 7]. The kinematical scheme characterizes also the third proof of 
the theorem,31 which is no more than a variation on the same geometric procedures 
used before. Meant to introduce three corollaries appended to Theorem VI, these 
propositions set the stage for the next Theorems VII and VIII. 
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Figure 7 

 
In contrast, the second demonstration of Theorem VI, known as the 

“mechanical proof,” had particular features. It is introduced in DML-2 with a remark 
attesting that “by use of the principles of mechanics [ex mechanicis] one may obtain the 
same result.”32 The proof is almost identical to the contents of the old Paduan folio 
160r, a sheet written by Galileo himself and made up of text and drawing. Three 
sentences in this document, “constat ex elementis mecanicis,” “momentum ponderis,” and 
“momentum suum totale,”33 stand as indications of its early date, as they all point out 
directely towards the conceptual universe of mechanics. 
 

 
Figure 8: Folio 160r34 
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Here is the text of the proof in DML-2, which is very close to the materiel 

recorded on folio 160r: 
 

By use of the principles of mechanics [ex mechanicis] one may obtain the same 
result, namely, that a falling body will require equal times to traverse the 
distances CA and DA, indicated in the following figure. Lay off BA equal to 
DA, and let fall the perpendiculars BE and DF; it follows from the principles 
of mechanics that the component of the momentum [momentum ponderis] 
acting along the inclined plane ABC is to the total momentum [i. e., the 
momentum of the body falling freely] as BE is to BA; in like manner the 
momentum along the plane AD is to its total momentum [i. e., the 
momentum of the body falling freely] as DF is to DA, or to BA. Therefore 
the momentum of this same weight along the plane DA is to that along the 
plane ABC as the length DF is to the length BE; for this reason, this same 
weight will in equal times, according to the second proposition of the first 
book, traverse spaces along the planes CA and DA which are to each other as 
the lengths BE and DF. But it can be shown that CA is to DA as BE is to 
DF. Hence the falling body will traverse the two paths CA and DA in equal 
times.35 

 
 

 
Figure 9 

 
The demonstration unfolds as follows: 

1) To prove t(CA) = t(DA), let’s posit AB = AD [Figure 9]. 
2) BA being equal to DA, we construct BE and DF as perpendiculars to the 

horizon. 
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3) “Ex mechanicis,” momento on ABC/momentum totale on the vertical = BE/BA. 
4) Since momentum (DA)/momentum totale (DF) = DF/DA or DF/BA,  
5) then momentum (DA)/momentum (AC) = DF/BE. 
6) Therefore, by DML-1−Theorem I, the spaces traversed in equal times on 

DA and on CA will be as DF/BE. 

7) Let’s join C and D and draw DGL, BH; °ADI = °DCA; then 

CAD   DAI. 
8) It follows that CA/AD = DA/AI = BA/AI = HA/AG = BE/DF. 
9) Therefore, t(CA) = t(DA).36 

 
In the last part of the demonstration (steps 7-9), the core of the proof is 

concentrated in the ratio AC/AD = BE/DF, which is proved on the basis of 
elementary Euclidean geometry about the properties of angles and triangles. The first 
part is based on the so-called De motu Theorem,37 according to which an inverse ratio 
between moments and distances is established at step (3) and used again at step (4). 
The theorem of isochronism is finally deduced on the basis of relations of 
proportionality implied by De motu Theorem: If we compare the spaces traveled in 
equal times by the same mobile on planes of different inclinations but having the 
same length, the spaces of the vertical descent will be inversely as the distances of 
oblique descents. In other words, the distances traveled in equal times from rest on 
two inclined planes are in inverse ratio to the distances corresponding to the same 
height.38  

The demonstration elaborated on folio 160r was reproduced in the Discorsi, 
where it was significantly modified to make it compatible with the mathematical 
structure of DML. The main feature of this modification lies in a special mention of 
Theorem I of the uniform motion. This reference was considered by some historians 
as an unfortunate initiative, as it means applying a proposition valid exclusively for 
uniform motion to justify a theorem of accelerated motion.39 But a recent study 
showed brilliantly that using Theorem II of DML-1 in the “mechanical 
demonstration” of Theorem VI entails no mathematical or conceptual contradiction.40 

Theorem II of DML-1 states that “if a moving particle traverses two distances 
in equal intervals of time, these distances will bear to each other the same ratio as the 
speeds. And conversely if the distances are as the speeds then the times are equal.”41 
According to Souffrin,42 this theorem has the status of a standard definition of speed 
in the context of pre-classical mechanics; it is equivalent to the following assertion: If 
speeds are between them in the ratio of integer numbers, then the distances traversed 
in equal times are like these integers. It is not stated anywhere that this definition is 
valid only for uniform motion, and hence this is why Galileo made use of it in this 
proof of of Theorem VI.43 

Another fragment of a demonstration related to descents on the low quarter 
of a vertical circle in Volume 72 was recorded on the recto of folio 151. This note is 
an autograph by Galileo and was not used in the Discorsi. Its relative date is close to 
the letter sent to Guidobaldo. This datation is supported by terminological evidence, 
like the use of the characteristic expression totale momentum and the consideration of 
momento along the cord as being equal to that acquired on the parallel tangent.44 
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Figure 10 

 
In this fragment on folio 151r Galileo sought to demonstrate that t(GD) = 

t(FD) [Figure 10], namely that in a vertical circle the times of descent on the 
perpendicular diameter and along a cord meeting it at the lowest point are equal. 
Considering the moments of descent and the distances as equal, the moments of 
descent on these two paths are like the diameter to the cord. However, to apply this 
proportionality between momenti and distances to deduce the the law of cords, speeds 
and momenti should be the same. After that, it becomes clear that if the moments on 
the perpendicular and on the cord are like the former to latter, the motions will occur 
in equal times, since if the speeds are proportional to the distances traversed, the times 
will be necessarily equal. 

The demonstration does not go until the end, but it can be completed easily if 
we follow the analysis of the inclined plane in Le Mecaniche. To prove that t(GD) = 
t(FD), an equality is established between momentum on FD and momentum on the 
tangent parallel to it. Since momentum on GD keeps the same value along all the line, it 
can be considered that momentum on FD/total momentum = CA/CB; for the static 
moment of the mobile on FD is equal to the static moment the body would have if it 
were suspended from CE, and its momento on GD would be the same as if it were 
suspended at B. AE being equal to AB, then CA/AE = ID/DA (I cuts FD as A cuts 
GD). Consequently, triangles ACE and ADI are similar and, as a result, momentum 
(FD)/momentum (GD) = DA/DA or FD/GD. Therefore, t(FD) = t(GD).45 

 
6. Outline of a Galilean theory of the pendulum 

We learn from Galileo’s correspondence that he knew the elementary laws of 
the pendular motion at the end of 1602. But for reasons we will have to define, he did 
not dedicate the same treatement to the three propositions announced in the letter to 
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Guidobaldo. Whereas the last two had the privilege to appear in the mathematical 
treatise on accelerated motion in DML, together with geometrical proofs, the 
proposition on pendulum isochronism had a different fate. Announced first in the 
Dialogo (1632) in a discursive form, it was taken up in the Discorsi in the First Day 
again in a similar non-mathematical context. The reconstruction of the Galilean theory 
of the pendulum will uncover the reasons of this differentiated treatment. 

 
6.1. The dream of a rigorous theory hampered by the dissent of experience 

In its simplest form, the pendulum is a weight suspended from a point with a 
thread. When it is discarded from the vertical, it oscillates around the two sides of the 
suspension point until it regains a state of rest. In these oscillations, the period is 
considered as constant, namely the swings of the same pendulum take equal times. 
Thanks to this property of isochronism, the physicists of the 17th century nurtured a 
considerable interest in the pendulum as an instrument defining equal times in 
chronometry and as a demonstrative device or analogic model to illustrate the 
principles of the new science of motion. Since Galileo, they used the oscillation 
mechanisms to modelise various physical situations regarding speed and acceleration 
in the fall of bodies, the oscillation of the Moon around the Earth and of the planets 
around the Sun, the vibrations of waves, of tides, etc.46 In brief, the pendulum 
reciprocations provide a mental model for physical explanations, like the balance in 
ancient and medieval mechanics. 

The pendulum moves under the effect of the force of heaviness or gravity as 
it executes a constrained fall downwards. The swinging bob stays attached to the 
thread and forces it to describe an arc of circle before swinging back in order to 
resume again, until the exhaustion of all kinetic energy. The oscillations are 
weakly hampered by the friction effect and last enough to allow the observer to 
assimilate their properties to those of a repeated free fall from a small height. For 
those reasons, we can conjecture plausibly that it was during his observations of the 
pendulum that Galileo understood clearly the constance of acceleration in motion. 
Afterwards, he endeavoured to define the mathematical formula for describing the 
mechanism and the proportion according to which the increase of speed in free fall 
occurs.47 

In his letter to Guidobaldo, Galileo emphasized the validity of his proposition 
about the law of cords and provided some of the means to ensure its validity, by 
referring precisely to the pendulum, an instrument proper to suppress the lack of 
perfect circularity in concave surfaces as well as friction effects. Hence, he asserted 
that the period of oscillation is determined by the length of the pendulum, not by its 
weight or by the oscillation amplitude. On the other hand, he considered the 
vibrations of the same pendulum or of two pendulums with the same length to be 
isochronous. Concretely, if two mobiles begin oscillating at the ends of two threads of 
equal length, their periods of oscillation will be isochronous and in 100 reciprocazioni a 
difference of only one oscillation will not be observed. Altough this perfect isochrony 
is difficult to obtain, however, provided that the arcs described are not too unequal, 
this can be considered as true. But strictly speaking, the kind of isochronism put 
forward by Galileo is valid only for oscillations of small amplitudes. In fact, the 
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physical tests show that pendulums with the same length having 1° and 90° of 
amplitude range, when released at the same moment, they begin to oscillate in 
dissonance after only few vibrations. Apparently, Galileo paid no attention to 
examining this important detail as he believed permanently in a general principle of 
pendulum isochronism, since his early discoveries disclosed in November 1602 until 
his mature works. He considered probably that such a disagreement between theory 
and experimental data is due to “external accidents” that he was decided to ignore, as 
the conclusion of his 1602 letter implied clearly.48 At the beginning, he considered the 
equality in oscillation periods as a fact based on experience, stemming from the 
properties of the pendulum and intended before all to confirm the law of cords. 
Subsequently, as we showed above, he tried in vain to produce a specific mathematical 
demonstration of this experimental fact. But as revealed by the appropriate sections of 
the Dialogo and of the Discorsi that will be dealt with below, his analysis of the 
pendulum properties mixed between theoretical and experimental aspects without 
reaching a clear cut mathematical proof. This stalled situation did not hinder him from 
progressing forward in his attempts to include his theory of the pendulum in the 
general framework of the larger science of motion. He ignored the lack of proof for 
the theorem of isochronism and endeavoured, at the end of his life, to apply his 
knowledge about the pendulum properties in fabricating a device for the measure of 
time, an orologio or pendulum clock, the first one in modern times. And so, even with 
the shortcomings of his pendulum theory, he inaugurated the modern age of 
chronometry.49 

At different stages, Galileo made four claims about pendulum motion that 
constitute the pillars of his theory of the pendulum: the law of isochronism, its two 
corollaries, and the law of length. 

- Law of isochronism : All pendulums of equal length execute their 
oscillations in equal (or almost equal) times; in other words, the periods of oscillation 
of the same pendulum or of two pendulums having the same length are constant. 
Simply put, this law (called also law of isochrony) states that for a given length all 
periods are the same. 

- Two corollaries to the previous law : Period is independent of amplitude 
(corollary of amplitude independence); period is independent of weight (corollary of 
weight independence); that is, the period of any single pendulum does not depend on 
the weight of the bob nor on the amplitude of oscillation. 

- Law of length : The period depends only on the length of the pendulum. In 
an equivalent formulation: the periods of two pendulums are between them like the 
square roots of their length; or, put simply, period varies with the square root of 
length.  

Since 1602 until the end of his life, Galileo developped in parallel the 
theoretical and practical consequences of these four propositions. He implemented 
progressively empirical and analogical arguments and sought to construct supporting 
mathematical reasoning and complex experimental settings. In this long research 
itinerary, he acquired a deep knowledge of the pendular process, but without being 
able to solve all its intricate difficulties.50 
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6.2. Arguing in favour of the pendulum isochronism 
In the First Day of the Discorsi, in order to illustrate the general fact of the 

free fall according to which in a medium without resistance, all bodies would descend 
with the same speed, and that diversification of speeds we observe in real motions is 
due to the medium,51 Galileo described the famous experience of two unequal balls, 
of cork and lead, suspended from two equal threads and oscillating in accordance.52 

The relevant experimental setting was exposed in the Dialogo,53 where it was 
directed towards testing the general assertion of isochronism. We take an arc made of 
a very smooth and polished concave hoop bending along the curvature of the 
circumference ADB, so that a well-rounded and smooth ball can run freely in it. Let 
equal weights be suspended from unequal cords, removed from the perpendicular and 
set free [Figure 11]: 

 
Now I say that wherever you place the ball, whether near to or far from the 
ultimate limit B —placing it at the point C, or at D, or at E— and let it go, it 
will arrive at the point B in equal times (or insensibly different), whether it 
leaves from C or D or E or from any other point you like [of the arc ADB]; a 
truly remarkable phenomenon.54 

 

 
Figure 11 

 
The complete description of this experimental setting aiming at justifying the 

equality of periods of oscillation makes it clear that in Galileo’s mind this equality of 
periods was a case in point relating it to Theorems VI and XXII and to the 
proposition of the brachistochrone. This last proposition states that the path of the 
quickest descent between two points is an arc of a circle. Considered in the 
experiment described above as following from the pendulum isochronism, the first 
two propositions are supposed to justify the proposition of the brachistochrone in 
return. Beyond the circularity characterising such a reasoning, the argument is based 
on the implicit assumption assuming the validity of the proposition of the 
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brachistochrone, intended to provide, by generalisation, to the pendular isochronism 
the needed confirmation. Galileo’s confidence about isochronism relied to a large 
extent on such an argument. Now, the brachistochrone scholium was stated and 
justified in the Discorsi in such a way that it was far from being adapted to this 
foundational role for a general proposition like the law of isochronism, since it was 
laden with various difficulties. Its geometric deduction depends on an abusive 
extension of the validity of Theorem XXII and lies before all on an unwarranted 
passage to the limit. Furthermore, it is just incorrect to assert that the arc of circle is 
the path of the quickest descent. Huygens will prove later that the cycloid was the 
most rapid line of descent from a point to another.55 

Why did Galileo maintain his contention of perfect isochronism? Was he 
aware that the law he stated suffered from an excess of generality? The negative 
answer to the second question would be astonishing, given Galileo’s confirmed skill in 
setting up experiments. Actually, his attitude can be explained only by arguments 
related to his methodology and to his experimental practice with pendulums. 

Departing from the general hypothesis governing free fall (all bodies would 
fall in vaccum with the same speed), he probably considered that in a perfect medium 
(like vacuum) all pendulums of identical length would swing in unison in a perfect 
isochrony. On this basis, he probably decided to ignore the dissonances he remarked 
in the periods of real pendulums. On the other hand, handling only small oscillations 
that he got with the vibrations of pendulums having the same length (and, thus, he 
could obtain small time intervals he needed in his experiments), he would have been 
tempted to extend the identity of periods that he observed to all oscillations, large or 
small, provided that the length is always the same. 

Indeed, this double conclusion seems to be sensible if we support it with 
other considerations. The belief in the regularity and simplicity of nature was an 
argument that strongly inspired modern scholars. Galileo himself was a a fervent 
supporter of this contention. Didn’t he maintain, in a famous declaration, that he was 
led in the investigation of naturally accelerated motion, “by hand as it were,” in 
following nature’s habit in employing in all her processes only the most common, 
simple and easy means? Therefore, the “continually acquiring of new increments of 
speed” by a falling body must be likewise taking place in a manner which is 
exceedingly simple and rather obvious to everybody.56 

Thus, as “each pendulum has its own time of vibration so definite and 
determinate that it is not possible to make it move with any other period than that 
which nature has given it,”57 the vibrating cords also have rigourously determined 
resonances that can not be modified.58 Vibrating cords, oscillating pendulums, these 
two analogous phenomena obey to the same rational laws of which the regularity and 
simplicity reflect the uniformity and straightforwardness of nature itself. For modern 
physicists, the intelligibility of reality was at that price. The success of the entreprise 
that they inaugurated could not be attained without such a philosophical assumption.59 

 
6.3. Strength and weakness of the law of length 

In the Galilean theory of the pendulum, the law of length constitutes the 
necessary complement of isochronism, to which it brings a quantitative dimension 
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that facilitates its agreement with reality. Hence, thanks to this law we can select 
determined times of oscillation by defining the lengths of strings and define 
pendulums that beat time at a second, half a second, etc. Even the two corollaries of 
the law of isochronism −independence of the period of amplitude and of weight− are 
stated only to specify that isochronism depends in the last resort only on the length of 
the cord.60 However, this strong pilar of the Galilean theory of the pendulum is not 
free from trouble. 

Since the beginning of his work program on isochronism, Galileo proclaimed 
continually the existence of a ratio linking the period of oscillation to the length of the 
string. In the Dialogo, a first version of this ratio is stated under the form of a simple 
proportionality:61  

T1/T2 = L1/L2. 
This simple version will take a more elaborated form in the Discorsi: 

  
As to the times of vibration of bodies suspended by threads of different 
lengths, they bear to each other the same proportion as the square roots of 
the lengths of the thread; or one might say the lengths are to each other as the 
squares of the times; so that if one wishes to make the vibration-time of one 
pendulum twice that of another, he must make its suspension four times as 
long. In like manner, if one pendulum has a suspension nine times as long as 
another, this second pendulum will execute three vibrations during each one 
of the first; from which it follows that the lengths of the suspending cords 
bear to each other the [inverse] ratio of the squares of the number of 
vibrations performed in the same time.62 

 
Hence, the law of length receives complex and sophisticated formulations. 

First, the periods of two pendulums of different lengths are like the square roots of 
their respective lengths : 

T1/T2 =  L1/ L2. 
Or: the lengths are like the squares of times :  

L1/L2 = T1
2/T2

2. 
Or even, in a modern formulation :  

T = 2  L/g 
(T being the oscillation period, L the length, and g gravity which is the motive force). 
Thus, Sagredo adds: 
 

Then, if I understand you correctly, I can easily measure the length of a string 
whose upper end is attached at any height whatever even if this end were 
invisible and I could see only the lower extremity.63 

 
Later on, Galileo described an experimental setup aimed at supporting the 

complex version of the law of length: 
 

Suspend three balls of lead, or other heavy material, by means of strings of 
different length such that while the longest makes two vibrations the shortest 
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will make four and the medium three; this will take place when the longest 
string measures 16, either in hand breadths or in any other unit, the medium g 
and the shortest 4, all measured in the same unit. Now pull all these 
pendulums aside from the perpendicular and release them at the same instant; 
you will see a curious interplay of the threads passing each other in various 
manners but such that at the completion of every fourth vibration of the 
longest pendulum, all three will arrive simultaneously at the same terminus, 
whence they start over again to repeat the same cycle. 64 

 
This narrative was inserted by Galileo at the end of the First Day of the 

Discorsi, in the context of discussions related to music and to some acoustic 
phenomena. It seems to him to be appropriate to validate the law of length. For three 
unequal pendulums having respectively lengths corresponding to 16, 9 and 4 units, the 
number of oscillations accomplished in the same time interval is 2 for the first 
pendulum, 3 for the second and 4 for the third. These results seem to support the idea 
that the law of length has a universal significance and is valid for all length values. 
However, several objections can be raised: What do we call the string length? Is it the 
rectilinear length of the cord at rest or the two curves that the cord describes at the 
ends of its oscillation? To determine the length, shall we take into account only the 
thread or must we add the diameter of the bob, or, at least its radius? A complete and 
consistent mathematical theory of the centre of oscillation depends, in great part, on 
the answers to these questions. For, indeed, if it seems that Galileo took into account 
the curvature underwent by the cord after each half-oscillation, he did not evaluate 
precisely all the consequences of such a distorsion. Moreover, in all likelihood, he 
never wondered in his writings about the exact dimension of the length. 

Before we go into details about these issues, we must emphasize first that in 
his investigations, Galileo made use of flexible, rigid and ideal types of pendulums, 
between which he did not distinguish clearly and sometimes used them 
interchangeably.65 The distinction between these three types of pendulums is an 
important issue, and its negligence entails several complications.  

In most experimental settings described by Galileo to illustrate the pendular 
motion, he deals with flexible pendulums. For instance [Figure 12], a weight is 
suspended from a cord and makes out pendulum AB. At point B, the pendulum is at 
rest and its curve has the form of the right line AB. When set in motion, a bending is 
exerted on the cord in C and D so that it has the form of a slight curve.66 Therefore, 
what is the pendulum’s real length, the one represented by curves AC and AD, which 
are equal to AB, or the shorter right lines connecting C and D to A ? If the length 
meant by Galileo is represented by the latter, it follows –by the law of length– that the 
periods of all the points located between the ends C, D and A are in an intermediate 
situation. In contrast, if this length is a curve equal to AB, then the law of length 
becomes indeterminate. 
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Figure 12 

 
In the following example, presented by Galileo in the Dialogo,67 the 

oscillations of pendulums are weakened so that the amplitudes of their oscillations 
decrease continually. As a result, the limits of successive oscillations are not C or D 
but points increasingly close to B, while at the extremities of successive oscillations 
the cord is less and less curved. Now, which of these curved lines –potentially of an 
infinite number– is the real length of the pendulum? 

If the pendulum keeps oscillating between points C and D, it would be 
possible to define a “mean” or average length, and consequently a “mean” period 
which, even though they are not equal to the length and period at point B or at any 
other point of the arc CBD, would be neverthless of a constant value. Yet, according 
to the setup outlined by Galileo, the pendulum is continually shortened. Thus, even if 
the length at B remains the same, it is not at all at the endpoints of each oscillation. It 
follows, unlike the conclusion drawn by Galileo, that the “mean” length and period 
are not constant.68 

In other passages of the Dialogo, it seems, on the contrary, that Galileo is 
aware of the cord curvature. This is the meaning in which we should understand 
Salviati’s assertion when he rejects a remark by Sagredo according to which without 
air resistance the pendulum motion would continue indefinitely. He affirms that even 
without such a resistance, the pendulum would slow down progressively until it 
reaches a state of rest.69 

In another scheme, Galileo proposes to examine the case of two mutually 
dependent pendulums, weight C at the end of the cord AC and weight E placed in a 
higher position on the same thread [Figure 12]. Making use of the law of length, it is 
stated that if the chord AC is moved apart far from the perpendicular and then 
released, the weights C and E will move along the arcs CBD and EGF. As it is 



www.manaraa.com

 
 
 
Society and Politics                                                                              Vol. 11, No. 2(22)/November 2017 

 

45 

suspended from a small distance and traverses a smaller arc, weight E would return 
back more rapidly than weight C. Hence, it would hinder the latter to attain point D, 
as it would do if it were free. Being thus a burden for it, it would finally bring it to 
rest.70  

But here Salviati objects that even if we remove weight E, cord AC will 
remain compounded of several heavy pendulums, all its parts being like pendulums 
attached closer and closer to A and laid out in such a way that they make the 
vibrations more and more frequent and bring the cord finally to rest:  

 
An indication of this is that as we observe the cord A, we see it stretch not 
tightly, but in an arc; and if in place of the cord we put a chain, we see this 
effect much more evidently; most of all when the weight C is quite far from 
the perpendicular AB.71 

 
However, it is not clear if Galileo was aware of the implications of such a 

curvature, especially of the fact that it could challenge in certain cases the validity of 
the law of length and imped the strict application of the law of isochronism to 
unequal pendulums. In fact, the reasoning in which he came to recognize the 
curvature exerted on the cord at the extremities of oscillation was aimed at testing the 
proposition affirming that the same pendulum makes its vibrations, large or small, in 
equal times. Taking into account the curvature pushed him to consider that if the 
concerned times of oscillation are not equal, “the difference is insensible.”72 We can, 
then, conclude that taking into account the curvature of the string should not be 
considered as the result of theoretical research but as stemming from real 
observations of swinging pendulums, of which the consequences were not considered 
when Galileo laid down the laws of the ideal pendulum. 

The existence of a gap between the experience of the real pendulum and the 
requirements of the theory appears as well in the way Galileo dealt with the other 
grand question of the law of length, namely if, to determine the length of the 
pendulum, only the distance end to end of the cord should be measured or the radius 
of the bob must be added too. This querry must have popped up in Galileo’s mind. At 
any rate, it was formulated explicitly by the scholar and military engineer Giovanni 
Pieroni in a letter he sent to Galileo on 4 January 1635.73 We ignore if Galileo 
answered his correspondent’s question, but he did not say a word about it in his 
published works.74 
 
7. By way of a conclusion 

At the end of this survey of the Galilean theory of the pendulum, we can 
draw some general conclusions. The first one is that Galileo did not really 
demonstrate his fundamental thesis regarding isochronism. The theoretical and 
experimental reasonings he elaborated to that effect, far from resolving the problem, 
were the source of additional puzzles which needed to be solved. However, this 
general fact should not hide a noteworthy conclusion, namely the Galilean theory of 
the pendulum has a complex structure and includes other important components. 
Indeed, Galileo’s work on the basic properties of the pendulum produced, in addition 
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to the general claim of isochronism, three other propositions of accelerated motion. 
These propositions are the Theorem of the law of cords, the Theorem of the quickest 
descent and the Scholium of the brachistochrone. Those propositions represent in 
Galileo’s mind the ideal pendulum, in which the pendular process is reduced to few 
simple and basic components. The cord of suspension is meant to represent the 
radius of the circle, while the swinging weight is reduced to a mobile point on the 
circumference, allowing the suppression of all observed perturbations in the 
vibrations of real pendulums and to proceed to applying the laws of isochronism. 

Nevertheless, if the analysis of these three propositions confirm the validity of 
the first two in their own specific area –simple or successive descents on inclined 
planes–, it does not allow at all the drawing of conclusions tending to prove the 
general claim of circular isochronism. In the same line of thinking, it is possible to 
emphasize the illegitimacy of the Galilean triple procedure aiming at deducing the 
brachistochronic line from Theorem XXII, defining this line as the arc of circle, 
identifying it with the tautochronic curve, and to conclude finally that the oscillations 
of pendulums of the same length are isochronous. 

In the field of experiment, Galileo’s approach was not more successful. 
Indeed, the experiments intended to prove either of the pendulum laws are not 
exempt from serious shortcomings and did not, in the end, succeed in proving the 
general contention regarding the equality of periods of oscillation for all pendulums of 
the same length. Galileo claimed that his experimental settings confirmed the 
assertion of a perfect isochronism, but in fact they only showed that in the ideal case 
(for example in the void) two small pendulums of equal length, without considering 
the weight and the amplitude of oscillation, would be almost synchronous. Whether in 
the Dialogo or in the Discorsi, the relevant experimental setups did not prove that the 
periods of two pendulums are rigorously equal. The main shortcoming of the 
experiments designed by Galileo to support his claims is that they confused 
isochronism and synchronism and did not differentiate with enough accuracy between 
periods with constant durations and periods with concordant durations, between 
equalities of durations and coordinated durations. 

Likewise, if the Galilean reasonings and experiments were undoubtedly 
successful in linking the period and the length of the pendulum, they were however 
marked with some ambiguity, due to the negligence of the cord curvature at the 
extremities of oscillation, and of the non-determination of the precise rectilinear 
dimension that should be taken into account for an adequate application of the law of 
length. Galileo did carry out undoubtedly experiments with pendulums, but as usual, 
relying on his confidence in the general framework of mathematization and 
abstraction, and for evident didactic reasons, he simplified his account of these 
experiments in such a way that they may be considered as thought experiments. 

Despite these numerous deficiencies, the Galilean theory of the pendulum 
was a major contribution –the first one, in fact– to the study of mathematical and 
physical properties of the oscillation of heavy bodies. It is on the basis of this 
contribution, which is part of a larger structure, namely the theory of accelerated 
motion, that Huygens elaborated the demonstration of isochronism. On the other 
hand, if the inaccuracy of the assertion of a perfect isochronism was often 
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emphasized, this failing does not ruin completely the Galilean theory of the 
pendulum, as this general contention required taking into account just pendulums 
with the same amplitude and equal length and to consider only their small oscillations. 
With these limitations in mind, we deal effectively with nearly isochronous 
pendulums. 

It should be further added that the isochronism defended by Galileo 
concerned only the simple pendulum, that is a pendulum formed by a very small mass 
fastened to a thin string of which the weight can be considered as insignficant. 
Moreover, the time intervals that Galileo needed and had to measure in his 
experimantal work with pendulums are short periods of equal spans of time that small 
pendulums having the same length could provide. All these considerations confirmed 
Galileo in his confidence in the general claim of isochronism and encouraged him to 
discard the objections that could be raised against it, several of which he was certainly 
aware of. 

From a theoretical point of view, the Galilean hypothesis of isochronism is 
the simplest explanation of the behaviour of pendulums, as it agrees with observations 
while it overcomes accidents and perturbations observed in pendular oscillations. 
With this in mind, this hypothesis represents the very essence of the pendulum 
motion, hiding behind the variety of particular cases. The argument of generalised 
isochronism represented a firm conviction by Galileo about simplicity, order and 
harmnoy as major components of the classical idea of nature. This philosophical view 
formed the basis of all the laws of the new science of motion, according to which 
nature is simple and acts always in the most adapted and economic way to generate its 
effects. Submitted to an intelligible order, nature expresses itself in a mathematical 
langage that the human mind can understand and interpret. 

Such a fundamental theory runs through Galileo’s works and is part of the 
new scientific vision that he helped to establish in a decisive way. It undoubtedly 
played an influential role in nurturing his confidence in the validity of the law of 
isochronism, despite the disagreements observed with experimental data. From this 
perspective, we understand better why he defended a theory of general isochronism, 
as an assertion which fitted perfectly in the epistemological vision that he held about 
the innermost “nature” of nature. On the other hand, the constance of periods of 
different pendulums shares the same idea of regularity that Galileo viewed in natural 
phenomena. This regularity is part of a general contention affirming simplicity and 
order and constitutes one of the main themes of his reflection. It is readily perceived 
in all his achievements in physics and astronomy. 

The study of uniformities, periodicities, phases, cycles, and frequencies occurs 
repeatedly and is a persistent and often observed theme in Galileo’s writings. Its 
profound significance was seldom noticed in the scholarship. For instance, and these 
are just few examples, the discovery of the regular revolutions of the satelites of 
Jupiter and of the phases of Venus was a major double argument put forward by 
Galileo in his defense of the Copernican system. Likewise, the study of cord 
vibrations and of musical frequencies was incorporated in the First Day of the Discorsi 
to conclude the section devoted to analysing free fall, that he elucidated and 
exemplified thoroughly with the properties of pendular and musical oscillations and 



www.manaraa.com

 
 
 
Mohammed Abattouy - The Mathematics of Isochronism in Galileo … 

 

48 

vibrations. Expressions like “in the same time,” “in equal times,” “in identical 
intervals of time” are repeated so much in Galileo’s writings and in various contexts 
that they acquire a precise meaning: they represent the vision of a simple and 
organised natural order, which is structured by regularities and harmonies, and the 
laws that stand out behind the periodicity of phenomena are perfectly intelligible. This 
is no less than the first step towards the program of mathematisation: the simplicity 
and comprehensibility of the universe can be rendered in a powerful, elegant, and 
efficient mathematical language responding to the same requirement of intelligibility 
and operability. 
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71 Galilei, G., (1890-1909), VII, 257; Galilei, G., (1967), 231. 
72 Galilei, G., (1890-1909), VII, 256. 
73 Galilei, G., (1890-1909), XVI, 189. 
74 Later on, Christiaan Huygens provided the right answer: the real length of the pendulum is 
the distance separating the suspension point from the centre of gravity of the pendulum. In 
1673, several years after he invented the pendulum clock, Huygens published the Horologium 
Oscillatorium sive de motu pendulorum in which he determined the curve an object must follow to 
descend by gravity to the same point in the same time interval, regardless of the starting point. 
He proved that this curve was a cycloid, rather than the circular arc of a pendulum (Horologium 
Oscillatorium, Part 2, Proposition 25), confirming that the pendulum was not strictly 
isochronous and Galileo's observation of isochronism was accurate only for small swings. For 
more details on Huygens’ theory of the pendulum, see Mahoney, M.S., “Christian Huygens: 
The Measurement of Time and of Longitude at Sea,” in Studies on Christiaan Huygens, ed. H.J.M. 
Bos et al. (Lisse: Swets, 1980), 234-270; Bevilaqua, F. et al., “The Pendulum: From Constrained 
Fall to the Concept of Potential,” in The Pendulum: Scientific, Historical, Philosophical, and 
Educational Perspectives, ed. Matthews, M. R., Gauld, C. F., Stinner, A. (Dordrecht: Springer, 
2005), 185-207; see especially 195–200; Yoder, J.G., (1988), chapters 3-5. 
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